Counting d-Polytopes with d+3 Vertices
نویسنده
چکیده
We completely solve the problem of enumerating combinatorially inequivalent d-dimensional polytopes with d + 3 vertices. A first solution of this problem, by Lloyd, was published in 1970. But the obtained counting formula was not correct, as pointed out in the new edition of Grünbaum’s book. We both correct the mistake of Lloyd and propose a more detailed and self-contained solution, relying on similar preliminaries but using then a different enumeration method involving automata. In addition, we introduce and solve the problem of counting oriented and achiral (i.e., stable under reflection) d-polytopes with d + 3 vertices. The complexity of computing tables of coefficients of a given size is then analyzed. Finally, we derive precise asymptotic formulas for the numbers of d-polytopes, oriented d-polytopes and achiral d-polytopes with d + 3 vertices. This refines a first asymptotic estimate given by Perles.
منابع مشابه
1 8 N ov 2 00 5 Counting d - polytopes with d + 3 vertices
We completely solve the problem of enumerating combinatorially inequivalent d-dimensional polytopes with d + 3 vertices. A first solution of this problem, by Lloyd, was published in 1970. But the obtained counting formula was not correct, as pointed out in the new edition of Grünbaum’s book. We both correct the mistake of Lloyd and propose a more detailed and self-contained solution, relying on...
متن کاملN ov 2 00 5 Counting d - polytopes with d + 3 vertices
We completely solve the problem of enumerating combinatorially inequivalent d-dimensional polytopes with d + 3 vertices. A first solution of this problem, by Lloyd, was published in 1970. But the obtained counting formula was not correct, as pointed out in the new edition of Grünbaum’s book. We both correct the mistake of Lloyd and propose a more detailed and self-contained solution, relying on...
متن کامل19 Polytope Skeletons and Paths
The k-dimensional skeleton of a d-polytope P is the set of all faces of the polytope of dimension at most k. The 1-skeleton of P is called the graph of P and denoted by G(P ). G(P ) can be regarded as an abstract graph whose vertices are the vertices of P , with two vertices adjacent if they form the endpoints of an edge of P . In this chapter, we will describe results and problems concerning g...
متن کاملTHE NUMBER OF SIMPLICIAL NEIGHBOURLY d-POLYTOPES WITH d+3 VERTICES
In this paper is proved a formula for the number of simplicial neighbourly d-polytopes with d + 3 vertices, when d is odd. §
متن کاملExtension complexity of polytopes with few vertices or facets
We study the extension complexity of polytopes with few vertices or facets. On the one hand, we provide a complete classification of d-polytopes with at most d + 4 vertices according to their extension complexity: Out of the super-exponentially many d-polytopes with d+4 vertices, all have extension complexity d+ 4 except for some families of size θ(d). On the other hand, we show that generic re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006